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Calculations, analytical solutions, and simulations were used to investigate the trade-off of echo spacing
and receiver bandwidth for the characterization of bi-exponential transverse relaxation using a multi-
echo imaging pulse sequence. The Cramer–Rao lower bound of the standard deviation of the four param-
eters of a two-pool model was computed for a wide range of component T2 values and echo spacing. The
results demonstrate that optimal echo spacing (TEopt) is not generally the minimal available given other
pulse sequence constraints. The TEopt increases with increasing value of the short T2 time constant and
decreases as the ratio of the long and short time constant decreases. A simple model of TEopt as a function
of the two T2 time constants and four empirically derived scalars is presented.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Characterizing transverse relaxation with multiple exponen-
tials, or a T2 spectrum, is of interest in the study of various tissues
and samples, including white matter and nerve [1,2], skeletal mus-
cle [3,4], cerebral injury [5], tumor [6], plants [7], food [8], bone
marrow [9,10], and more. Such characterization offers the poten-
tial to indirectly observe microscopic sample characteristics, such
as myelin in white matter; however, it requires a relatively high
signal-to-noise ratio (SNR) [11–13], so optimization of acquisition
and processing methods is important.

Some studies have investigated optimal sampling of multi-
exponential transverse relaxation, including numerical evaluations
of number and range of echo times sampled [12–14] and the ben-
efits of log-spaced sampling [15]. Beyond NMR-specific studies,
there are a wealth of publications that address the fitting and
parameter estimation from models involving the sum of exponen-
tial functions. An extensive review of this material was presented
by Istratov and Vyvenko [16] and includes discussion on T2-spec-
tral resolution limits based on sampling times and model parame-
ters. More recently, at least one publication presented simple
analytical approximations of the uncertainty of fitted parameters
in models of bi-exponential relaxation [17], which could be used
to optimize sampling. A couple of studies have incorporated prac-
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tical imaging factors/limitations—the effect of imperfect refocusing
[18] and SAR limitations on sampling times [19]—into the process
of optimizing sampling, but no study, to our knowledge, has incor-
porated the effect of receiver bandwidth on sampling times.

In a multi-echo imaging measurement, the time required for
sampling each echo is typically on the order of milliseconds and
can often place a lower limit on the echo spacing (TE). In order
to reduce this time and, in-turn, TE, one must increase the receiver
bandwidth (BW) at the cost of SNR. Herein is presented calcula-
tions and simulations that demonstrate the effect of trading-off
BW for TE for two-pool systems with a range of possible relaxation
rates and pool sizes.

2. Theory

As shown in Fig. 1, the minimum TE of a multi-echo imaging
pulse sequence suitable for measuring transverse relaxation de-
pends on the time required to acquire each echo (Tacq) and the time
required for fixed events (Tconst), like the RF refocusing pulse, spoi-
ler gradients, ramp-time delays and delays for eddy current decay

TE ¼ Tconst þ Tacq ¼ Tconst þ Ns=BW ; ð1Þ

where, Ns is the number of complex samples collected during each
echo and BW is the bandwidth of this acquisition (assuming quad-
rature detection). Generally, every effort is made to minimize both
Tacq and the Tconst in order to minimize TE. Assuming one has de-
fined a minimum Ns based on image resolution requirements, the
only way to further reduce Tacq is to increase BW. The inherent
trade-off in this reduction of Tacq is that the image SNR is inversely
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Fig. 1. Relevant timings of a multi-echo imaging pulse sequence. Two consecutive
echoes are shown, separted by TE, one RF refocusing pulse, and two spoiler
gradients.
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proportional to the square root of BW, so reducing TE through in-
creased BW also decreases the SNR. A reduced TE will improve the
precision of estimated transverse relaxation parameters, while the
concomitantly increased BW and subsequently decreased SNR will
deteriorate this precision. Note that the exception to this descrip-
tion is when the total number of echoes (NE) is limited and the sam-
ple is comprised of a combination of spins with short and long T2. In
this case, reducing TE may reduce precision of fitted parameters as a
consequence of under-sampling of long T2 components. This prob-
lem may be avoided with minimal complication by appending a
small number of widely spaced echoes at the end of the standard
echo train [19]. For the purpose of the work herein, this under-sam-
pling of long T2 signal is avoided by assuming there is no practical
limit on NE, so the analysis is focused on the trade-off of TE for im-
age SNR.

In order to determine the optimal TE for a given system, the Cra-
mer–Rao lower bound (CRLB) of the estimated relaxation parame-
ter variance can be computed. A complete derivation of the
Cramer–Rao lower bound can be found elsewhere [20], but a sim-
ple explanation in the context of this paper is as follows. Consider a
two-pool system, in which the observed transverse magnetization
is described by a simple real bi-exponential function with added
white Gaussian noise,

MTðnÞ ¼ Ma
o expð�n � TE=Ta

2Þ þMb
o expð�n � TE=Tb

2Þ þ eðnÞ; ð2Þ

where n ¼ ½1;2; . . . ;NE�, and eðnÞ are independent and identically
distributed random values drawn from a Gaussian distribution
with zero mean and standard deviation (SD) r (i.e., the image
noise). Unbiased estimates of the four model parameters,
Ma

o; Mb
o; Ta

2; and Tb
2, result from a least-squares fitting of the model

to a series of observations, MTðnÞ. Then the CRLB of the SD of the k-
th of these fitted parameters, sðhkÞ, is defined by

sðhkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF�1Þkk

q
; ð3Þ

where hk represents the k-th fitted parameter and F is the Fisher
information matrix given by

Fjk ¼
1
r2

X
n

@MTðnÞ
@hj

@MTðnÞ
@hk

� �
: ð4Þ

That is, the unbiased estimate of parameter hk has an associated
variance that is no less than s2ðhkÞ, thereby defining the best preci-
sion possible in estimating each of the four model parameters,
Ma

o; Mb
o; Ta

2; and Tb
2. The elements inside the summation in Eq. (4)

are easily defined algebraically for the bi-exponential system in
Eq. (2), and, using Eq. (1), TE and r are related by,

r ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BW=BW0

p
¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns

ðTE� TconstÞBW0

s
; ð5Þ
where r0 defines the SD of the image noise at a receiver bandwidth
of BW0. From here, both numerical and analytical solutions of Eqs.
(3)–(5) are possible, as are Monte Carlo simulations of fitting Eq. (2).
All of these methods provide sðhkÞ as a function of the four sample
parameters (Ma

o; Mb
o; Ta

2 and Tb
2), and the acquisition parameters

(NE, TE, Tconst, Ns, BW0, and r0), although the CRLB solutions are
closed form and much faster than using the Monte Carlo approach.

This work focuses on primarily on the numerical solutions, be-
cause of their ease and efficiency, but some Monte Carlo solutions
and analytical solutions are presented for validation and generality.
Simulations were also run to investigate the effect of TE when the
underlying model is more complex than a sum of two discrete expo-
nential functions. For example, in practice, most investigators char-
acterizing transverse relaxation in white matter assume that the two
commonly observed T2 components have a finite width in T2-space.
Consequently, fitting of these data is usually done using a linear-in-
verse approach, where the observed signal is fitted to a wide range of
decaying exponential functions and the solution (the T2-spectrum) is
regularized by minimizing its energy or curvature [11].

3. Methods

3.1. Numerical Solutions

As a starting point for numerical calculations, values of
Tconst = 5 ms, NE = 200, r0 = 1/750, Ns = 128, BW0 = 64 kHz,
Ma

o = 0.2, and Mb
o = 0.8 were used. This Tconst value was based on a

1 ms RF refocusing pulse, two 1-ms spoiler gradients and two 1-
ms delays after the spoiler gradients to allow eddy-currents to de-
cay. (For more information on imaging pulse sequence require-
ments for measuring multi-exponential T2, see [21] and [22], and
related literature.) The effect of variations in Tconst on the CRLB cal-
culations is discussed further below. The relatively large NE value
ensured that varying TE did not result in under-sampling of the
longer-lived T2 signal decay, which was tested by re-running a sub-
set of CRLB calculations without using Eq. (5) to incorporate the ef-
fects of minimum TE on image noise (i.e., r is constant)—see Fig. 2,
in Results section. (Note that while NE = 200 may not be practical
for most in-vivo imaging for reasons of power deposition and spoi-
ler gradient demands, sampling to long echo times by appending a
small number of widely spaced echoes at the end of a standard
multi-echo sequence is practical and has the same effect of pre-
venting under-sampling of long T2 signal [19]). The values of the
remaining acquisition parameters—r0; BW0; Ns; Ma

o, and Mb
o—are

arbitrary as they do not influence the optimization of TE v. BW—
also demonstrated in Fig. 2, in the Results section.

With these parameters fixed, a series of calculations were per-
formed with varied Ta

2; Tb
2 and TE. The short-lived T2 component

was varied linearly as Ta
2 ¼ ½10;11; . . . ;35� ms, which spanned the

expected range of T2s for myelin water and intra-cellular muscle
water. The long-lived relaxation time was varied in linear propor-
tion to the short-lived time as Tb

2 ¼ Tx � Ta
2, where Tx ¼

½3;3:25;3:5; � � � ;10�, which was more than sufficient to span the
range of expected long-lived T2 components in white matter, nerve,
and muscle. For each pair of Ta

2 and Tb
2, the Fisher Information ma-

trix and resultant CRLB for estimated parameters’ SD were com-
puted using Eqs. (3)–(5) for TE ¼ ½5:5;5:6;5:7; � � � ;40� ms. The
SNR of each fitted parameter was then defined as

SNRðhkÞ ¼ hk=sðhkÞ: ð6Þ
3.2. Simulations

In order to validate these CRLB calculations and to explore a
wider range of possible systems, a series of Monte Carlo simula-
tions were performed. To validate the CRLB calculations, noisy bi-
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Fig. 2. Plots of SNR of four fitted parameters (indicated by line color) of a bi-exponential model of transverse relaxation as a function of TE. The zenith of each plot is indicated
with a diamond symbol. In frame (a), calculations were made using Ta

2 = 15 ms, Tb
2 = 75 ms, Tconst = 5 ms, NE = 200, r0 = 1/750, Ns = 128, BW0 = 64 kHz, Ma

o = 0.2 and Mb
o = 0.8.

Other frames show results from the same calculations made using the following different parameters: (b) Ma
o = 0.4 and Mb

o = 0.6, (c) r0 = 1/250, and (d) Ns = 256. Also shown in
frame (a) as dashed lines are the results from the same calculations make without the use of Eq. (5)—i.e, no dependence of r on TE (For interpretation of colour mentioned in
this figure, the reader is referred to the web version of this article.).

A.N. Dula et al. / Journal of Magnetic Resonance 196 (2009) 149–156 151
exponential relaxation data were generated then fitted with Eq. (2)
using a Levenberg–Marquardt algorithm. The initial guesses for the
regression were randomly varied for each trial, with means equal
to the underlying model parameters and a 10% coefficient of vari-
ation. These simulations used the following parameters: NE = 200,
r0 = 1/750, Ns = 128, BW0 = 64 kHz, Ma

o = 0.2, and Mb
o = 0.8, Ta

2 ¼
½10;15;20;25�ms, Tx ¼ ½3;4;6;8;10�, and TE¼ ½5:5;6:0;6:5; � � � ;30�
ms. Zero mean Gaussian noise (e (n), n = 1,. . ., NE), with SD as de-
fined by Eq. (5) were independently generated for Nt = 1000 trials,
using each combination of Ta

2, Tx, and TE. The SNR for each param-
eter was then defined as the ratio of the parameter value to the SD
of its fitted value calculated across the Nt trials, similar to Eq. (6).

Simulations were also run to investigate the effect of TE on
model systems comprised of a distribution of relaxation times
rather than two distinct components. In particular, the model de-
scribed above was modified such that each spin pool was defined
by a Gaussian shape in a log-spaced T2 domain (similar to used
in a previous study for fitting relaxation data [23]). That is, compo-
nent a was defined by

SaðjÞ ¼ pa exp � log T2ðjÞ � log Ta
2

log d

� �2
 !

; ð7Þ

(where log is the natural logarithm) and likewise for SbðjÞ, where d
determines the width of the distribution, and pa and pb are set such
that the sum of SaðjÞ and SbðjÞ over all j = 1 to J equaled Ma

o and Mb
o ,

respectively. For all simulations, T2ðjÞ was defined by J = 100 values,
log-spaced between 5 ms and 1 s. With these distributions, the ob-
served signal was then defined as

MTðnÞ ¼
XJ

j¼1

½ðSaðjÞ þ SbðjÞÞ expð�n � TE=T2ðjÞÞ� þ eðnÞ: ð8Þ
The simulations used Ta
2 ¼ 15ms; Tx ¼ ½3;4;6;10� d ¼ ½1:0;

1:26;1:59;2:0�, and 13 TE values pseudo-log-spaced between
5.5 ms and 30 ms. (Note that for the cases where d = 1.0, the T2

component width was infinitely narrow and Eq. (2) was used to
create MT(n)). Fig. 6 shows the T2 spectra (sum of SaðkÞ and SbðkÞ)
for each Ta

2, Tx, and d. All other parameters were the same as for
the bi-exponential relaxation simulations, defined above. For every
combination of Tx and d, noise, eðnÞ, was independently generated
for 1000 trials.

Each simulated noisy signal generated by Eq. (8) was fitted to a
range of 100 T2 values, log-spaced between 5 ms and 1 s using a
non-negative least-square method [24] and regularized with a
minimum curvature constraint [11]. The regularizing parameter
was automatically adjusted using the generalized cross-validation
approach [25]. Each spectrum was then analyzed by decomposing
it into n + 1 T2 components, where n was the number of spectral
nadirs identified by positive to negative changes in the first deriv-
ative of the spectrum. After discarding T2 components representing
< 2% of the integrated spectral amplitude, if exactly two T2 compo-
nents were identified, then four model parameters, Ma

o; Mb
o; Ta

2,
and Tb

2, were computed. Component amplitudes, Ma
o and Mb

o, were
defined as the integrated area of each T2 component and the com-
ponent T2 values, Ta

2, and Tb
2, were defined as the amplitude-

weighted mean T2 value computed over each component T2

domain.
3.3. Analytical Solutions

The appendix outlines a general analytical solution for the stan-
dard deviation of each fitted parameter. The only approximation
involved was to assume NE =1. This is equivalent to requiring that
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the decay of transverse magnetization be sampled down to the
noise floor to avoid under-sampling of the long-lived T2 compo-
nent, as described above for the numerical calculations.

4. Results and discussion

Fig. 2a demonstrates typical CRLB-calculated graphs of SNRðhkÞ
v. TE for each of the four fitted parameters for a system defined
by Ta

2 = 15 ms, Tb
2 = 75 ms, Ma

o = 0.2, and Mb
o = 0.8. The solid lines

are SNRðhkÞ values calculated using Eqs. (3)–(6), while the dashed
lines are derived from the same calculation made while excluding
the influence of BW on image noise (i.e, without Eq. (5)). The
dashed lines decrease monotonically with TE, which agrees with
previous work [14] (which used CRLB, but did not incorporate a
BW–TE relationship) and demonstrates that under-sampling of
long T2 components was not a significant factor in the results pre-
sented herein. In contrast, for each fitted parameter, the solid
lines show that SNRðhkÞ increases with TE to some maximal value,
denoted in the figure by a diamond symbol, then decreases
monotonically with further increasing TE. This demonstrates that
the influence of echo spacing on BW and, in-turn, image noise, is
an important factor in characterizing multi-exponential
relaxation.

Also shown in Fig. 2 are similar graphs made from three varia-
tions in the sample or acquisition parameters: (b) Ma

o = 0.4 and
Mb

o = 0.6, (c) r0 = 1/250, and (d) Ns = 256. In all cases, the optimal
TE (TEopt) for all four estimated parameters are identical to those
in frame (a), demonstrating that the TEopt calculations are indepen-
dent of compartment sizes, baseline SNR, and number of samples.
This independence from Ma

o; Mb
o; r0, and Ns can also be seen in the

analytical solutions presented in the appendix, when combined
with Eqs. 5 and 6. For example, Eq. (A.3) shows CRLB-defined
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Fig. 3. Plots of SNRðMa
oÞ as a function of TE for a wide range of different Ta

2 and Tb
2 val
minimum variance of all four model parameters. In each case,
the parameters Ma

o; Mb
o; r0, and Ns are either not present or can

be factored out. Therefore, each of these four parameters may
change the scale of sðhÞ, but not the shape of its dependence on TE.

In addition to the numerical and analytical solutions, Monte
Carlo simulations were also performed. Fig. 3 shows plots of
SNRðMa

oÞ v. TE, derived from numerical CRLB calculations (lines)
and the Monte Carlo simulations (dots) for the bi-exponential
model given by Eq. (2). The results from the analytical solutions
are not shown but would be indistinguishable from the numerical
calculations. With the exception of a few measurements with low
SNRðMa

oÞ, the Monte Carlo- and CRLB-derived calculations are in
good agreement, thereby validating the CRLB calculations and ana-
lytical solutions. In the cases where the Monte Carlo derived mea-
sures of SNRðMa

oÞ do not reach those determined from the CRLB
(e.g., around TE = 18 ms in Fig. 3a), the difference likely results
from very low SNR and, as a consequence, ineffective convergence
to the true least-square solution in these cases.

Fig. 3 also demonstrates the strong dependence of TEopt on both
Ta

2 and Tb
2. This is demonstrated by the solid line curves in Fig. 3,

which show SNRðMa
oÞ for a wide array of different Ta

2 and Tb
2 values.

Comparing data across the four frames shows that TEopt increases
with increasing Ta

2, while comparing data within each frame shows
that TEopt increases with decreasing Tb

2. The increase in TEopt with
increasing Ta

2 is not surprising and simply indicates that a more
slowly decaying function need not be sampled as quickly as a more
quickly decaying function to produce the same variance of esti-
mated parameters. The increasing TEopt with decreasing Tb

2 is, per-
haps, less intuitive, and can be interpreted that SNR becomes
increasingly more valuable as compared to temporal sampling
density (i.e., echo spacing) when trying to distinguish signal com-
ponents with increasingly similar T2s.
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Table 1
Constants computed for optimizing TEopt with Eq. (8).

Parameter of interest Constant in Eq. (8)

a1 m2 m3 (s) b3 (s)

Ma
o 0.072 8.03 �0.020 0.0078

Mb
o 0.55 �1.98 �0.0086 0.0094

Ta
2 0.22 �0.11 �0.0009 0.0063

Tb
2 0.088 �2.35 �0.013 0.011
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These CRLB calculations are relatively easy to compute for any
given system of bi-exponential relaxation, but for a quick refer-
ence, the data from the calculations presented herein were used
to generate a simple empirical model of the relationship between
TEopt and Ta

2 and Tb
2. Fig. 4 shows a family of curves plotting TEopt

vs. Ta
2 for all ratios Ta

2=Tb
2, from which it was observed that TEopt in-

creases approximately linearly with Ta
2

TEopt ¼ m1Ta
2 þ b1; ð9Þ

and the slope (m1) and intercept (b1) of these linear functions vary
with Ta

2=Tb
2. Fig. 5 shows a crudely linear relationships between

log(m1) and Ta
2=Tb

2 and between b1 and Ta
2=Tb

2, and from these, Eq.
(9) can be expanded to

TEopt � a1Ta
2 exp m2

Ta
2

Tb
2

 !
þm3

Ta
2

Tb
2

 !
þ b3; ð10Þ

where a1 ¼ expðb2Þ. Thus, three linear regressions were calculated
to produce estimates of m1, m2, m3, b1, b2, and b3, resulting in the
four independent constants in Eq. (10): a1, m2, m3, and b3. The same
approach was used for all four estimated parameters in Eq. (1)
(Ma

o; Mb
o; Ta

2; and Tb
2), and the results are shown in Table 1. Eq.

(10) thus provides a quick and simple formula to estimate TEopt

for a given two-pool system and for a given parameter of interest.
In addition to the numerical studies, a complete analytical solu-

tion for sðhkÞ in the bi-exponential model is presented in the
appendix. As mentioned above, the results match the numerical
solutions and have the advantage of being applicable to arbitrary
conditions, beyond those explored in this paper. These analytical
results also provide insight into signal dependencies that are not
readily apparent from the numerical results. For example, while
the numerical results presented demonstrate that sðMa

oÞ increases
as Ta

2 approaches Tb
2, the analytical solution of sðMa

oÞ shows this ef-
fect quantitatively with the ðe�TE=Ta

2 � e�TE=Tb
2 Þ3 term in the denomi-

nator. Similarly, one can see that the effect of similar T2s is more
pronounced for estimating component amplitudes than time
constants.

In comparison to the analytical solutions presented herein,
much simpler, although approximate, solutions have been derived
using Bayesian probability theory [17]. These equations produce
qualitatively similar curves to the dashed lines in Fig. 2, but when
combined with Eq. (5) do not predict the existence of an optimal TE
as found with the CRLB approach and validated with Monte Carlo,
herein. Thus, while the CRLB solutions are complex analytically,
they ultimately provide a more complete picture of the effect of
model and acquisition parameters on estimated parameter
variance.

A potential shortcoming of the CRLB solutions lies in the fact
that a strict bi-exponential model, as defined by Eq. (2), is probably
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not a good representation of multi-exponential relaxation in many
tissues and samples. A more relevant model is presented in Eq. (8),
which generalizes the bi-exponential model to one defined by two
smooth distributions of relaxation times, as shown in Fig. 6. Fig. 7
shows the results of the Monte–Carlo simulations of fitting data
generated using these smooth T2 spectra. (Note that these results
were derived only from trials that resulted in two fitted T2 compo-
nents, which was > 88% of trials for all but three cases shown:
d = 1.59, Ta

2 = 45 ms, and d = 2.00, Ta
2 = 45, and 60 ms.) The results

demonstrate that, as expected, the CRLB calculations presented
above do not predict the absolute value of the estimated parameter
variances but they do predict the general shape and model param-
eter dependence of SNRðMa

oÞ vs. TE. Note similarity between Fig. 7a
with Fig. 3b, which shows the results of fitting the same underlying
bi-exponential data with a strict bi-exponential model (Fig. 3b) and
with a distribution of T2 times (Fig. 7a). Naturally, the strict bi-
exponential fitting results in slightly higher SNRðMa

oÞ values, partic-
ularly at lower values of Ta

2=Tb
2, but the SNRðMa

oÞ vs. TE curve shape
and TEopt values are similar. Also, as the model T2 components are
broadened (increasing values of d, Fig. 7b–d), SNRðMa

oÞ values drop
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Fig. 6. T2 spectra, defined using Eq. (7), used for Monte Carlo simulations of fitting data comprised of distributions of T2 times. Shown in the four frames are spectra defined by
Ta

2 = 15 ms (all cases), four values of Tb
2, and four values of component width (d).
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and the SNRðMa
oÞ v. TE curve broadens but the TEopt values do not

change appreciably.
A more general interpretation of the statistics of fitting smooth

T2 spectra is a complicated problem involving many factors. In
addition to breadth of the T2 components, as considered herein,
the number and range of exponential functions to fit, the method
of regularization, the adjustment of the regularizing parameter,
and the method extracting model parameters from the spectrum
may all significantly impact the results. Nonetheless, Eq. (10) ap-
pears to provide a good starting point for estimating TEopt in sys-
tems that are thought to be well described by two relaxation
components.

The utility of this work, through either the numerical or analyt-
ical solutions, is possibly most significant for myelin water map-
ping in white matter [26,22,27]. For these studies, a two-pool
model is often used to describe water from within the layers of
myelin as pool a and water from the intra- and extra-axonal spaces
lumped together as pool b, and the relevant parameter for optimi-
zation is SNRðMa

oÞ because the myelin content is believed to be pro-
portional to by Ma

o. In-vivo at 1.5T, the commonly cited values for
Ta

2 and Tb
2 are 20 and 80 ms, respectively [27], which leads to

TEopt = 13.6 ms; however, this value drops closer to the typically
used TE = 10 ms for smaller values of Ta

2 as seen in experimental
studies [22]. Also, although the TEopt increases with increasing Ta

2

and decreasing Tb
2, the SNRðMa

oÞ v. TE function also becomes more
broad, so there is less at stake in optimizing the TE.

It is also important to note that the CRLB-derived values of TEopt

are not necessarily practical for any given imaging application. At
low BW, imaging artifacts due to background field variation and
chemical shift may limit the ability to effectively utilize the TEopt.
Also, depending on the application and hardware limitations,
different Tconst values may need to be considered. Longer Tconst val-
ues will necessarily dictate longer TEopt and CRLB calculations
should be repeated for a condition where Tconst is much different
that 5 ms, as used herein. Lastly, the model assumed real data with
additive Gaussian noise; however, at low SNR, the noise in magni-
tude MRI is Rician. For most cases of multi-exponential character-
ization, high SNR is required so the effect of noise fold-over in
magnitude images is minimal. In general, though, one can correct
for the effects of Rician noise on the echo magnitudes prior to data
analysis [28], which will make the data analysis consistent with
the CRLB calculations herein.
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Appendix A

Starting with Eq. (2), and ignoring the noise term, the partial
derivatives are
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¼ cn
1
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¼ cn
2
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2

¼ nc3cn
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@MT
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2

¼ nc4cn
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Fig. 7. Plots of SNRðMa
oÞ as a function of TE for cases where a distribution of T2 times were fitted with a distribution of decaying exponential functions. Results are shown for a

range of different Tb
2 and component width (d) values.
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Substituting this into Eq. (4), taking the number of echoes to
infinity, and using the series formulae

X1
n¼1

rn¼ r
1� r

;
X1
n¼1

nrn¼ r

ð1� rÞ2
; and

X1
n¼1
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ð1� rÞ3
; we get
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Eq. (3) then gives
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